

## Synthesis and antibacterial screening of *N*-[Naphtho[1,2-*b*]pyrano[3,4-*d*]thiazol-8-yl] spiroindoloazetidin-2-ones/thiazolidin-4-ones

Jitendra P Suryavanshi & Nandini R Pai\*

Department of Organic Chemistry, D. G. Ruparel College, S. Bapat Marg, Mahim, Mumbai 400 016

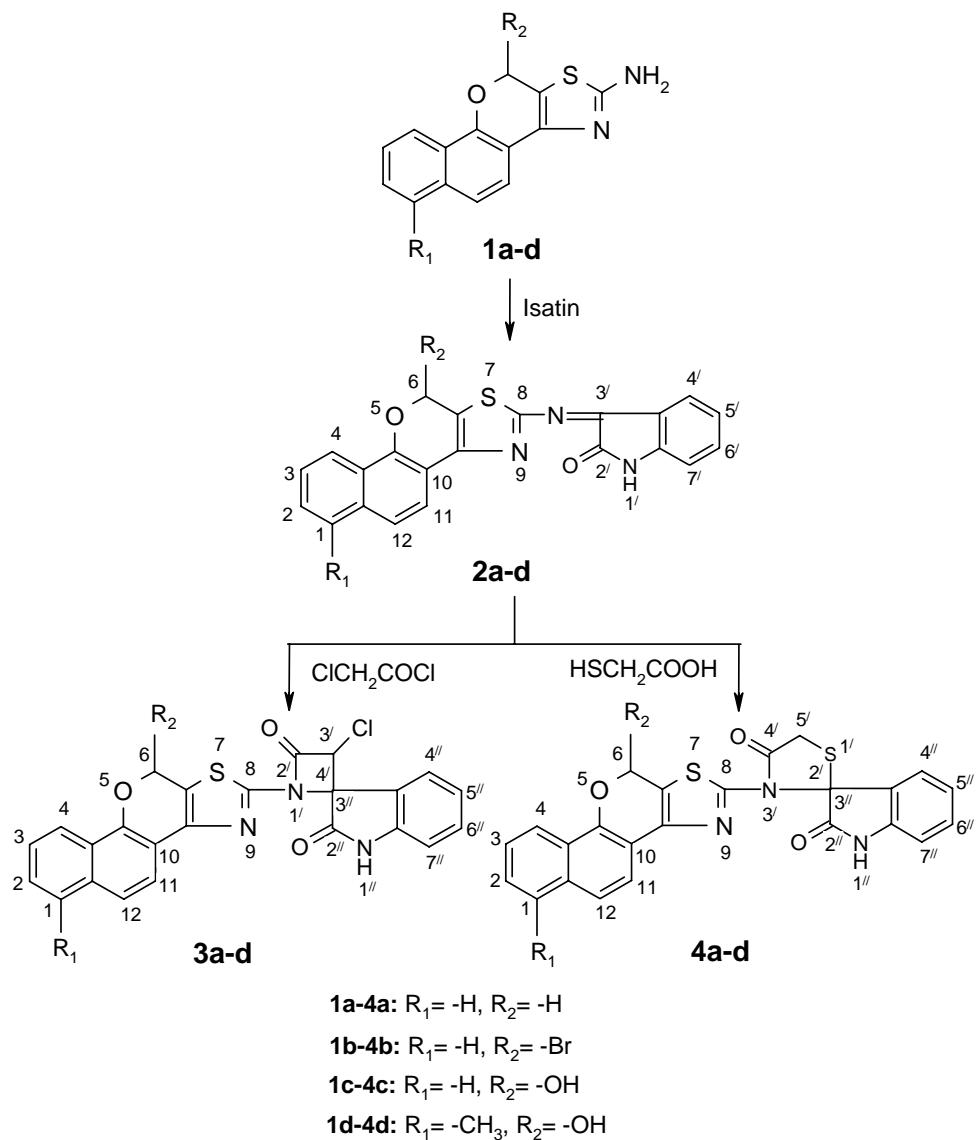
E-mail: nandini\_pai@hotmail.com

Received 23 December 2004; accepted (revised) 6 October 2005

2-Amino-11-hydronephtho[2,1:5,6]pyrano[4,3-*d*]thiazole **1a-d** on treatment with isatin affords naphtho[1,2-*b*]pyrano[3,4-*d*]thiazolo-8-yl(3-imino-2-oxo-1*H*-indole **2a-d** which on further reaction with chloroacetyl chloride and mercaptoacetic acid yields the corresponding *N*-[naphtho[1,2-*b*]pyrano[3,4-*d*]thiazol-8-yl]spiro-[3*H*-indole-(1*H,2H*)-3,4-(2*H*)-3-chloroazetidin-2,2-diones **3a-d** and *N*-[naphtho[1,2-*b*]pyrano[3,4-*d*]thiazol-8-yl]spiro-[3*H*-indole-(1*H,2H*)-3,2-(4*H*)-thiazolidine]-2,4-dione **4a-d**. All the compounds **2a-d**, **3a-d** and **4a-d** have been screened and found to possess considerable antibacterial activity.

**Keywords:** Naphthopyrans, azetidin-2-ones, thiazolidin-4-ones, 2-oxo-1*H*-indole, antibacterial activity

**IPC:** Int.Cl.<sup>8</sup> C 07 D


Naphthopyrans<sup>1</sup> are widely distributed in nature and are known to exhibit anti-hypertensive<sup>2</sup>, antiallergic<sup>3</sup> and hair growth stimulant<sup>4</sup> activity. Moreover, pyranothiazole heterocycles possess herbicidal<sup>5</sup> activity. Various indole derivatives show a wide range of biochemical properties<sup>6</sup>. It has been reported<sup>7</sup> that if the indole ring is joined to other heterocyclic groups through a spiro-carbon atom, the resulting compounds show enhanced biological activity. The chemistry of azetidinones is of great importance because of the use of  $\beta$ -lactam derivatives for the treatment of tuberculosis<sup>8</sup>. 2-Azetidinones and its derivatives possess a variety of useful therapeutic properties<sup>9-11</sup> and interesting applications in the field of medicine<sup>12-17</sup>. Also, the thiazolidin-4-ones possess a wide range of pharmaceutical activity<sup>18</sup>. In view of the importance of the above compounds, it was planned to synthesize compounds in which the 2-amino-11-hydronephtho[2,1:5,6]pyrano[4,3-*d*]thiazole<sup>19</sup> group is joined to the isatin, spiroindoloazetidin-2-one and spiroindolothiazolidin-4-one ring system via the N-atom of its free amino group. The resulting molecule was expected to be biologically active.

With this intention, the 2-Amino-11-hydronephtho[2,1:5,6]pyrano(4,3-*d*)thiazole **1a-d** was condensed with isatin to afford Naphtho[1,2-*b*]pyrano[3,4-*d*]thiazol-8-yl(3-imino-2-oxo)-1*H*-indole **2a-d**. The IR

spectrum of **2a-d** showed bands around 3441 for the N-H stretching, 3050 for C-H stretching and 1700  $\text{cm}^{-1}$  for the carbonyl group, etc. Its <sup>1</sup>H NMR spectrum indicated a singlet at  $\delta$  12.92 for the  $>\text{NH}$  of the indole ring, which was  $\text{D}_2\text{O}$  exchangeable. Compounds **2a-d** on treatment with chloroacetyl chloride and mercaptoacetic acid yielded the *N*-[naphtho[1,2-*b*]pyrano[3,4-*d*]thiazol-8-yl]spiro-3*H*-indole-(1*H,2H*)-3,4-(2*H*)-3-chloroazetidin-2,2-diones **3a-d** and *N*-[naphtho[1,2-*b*]pyrano[3,4-*d*]thiazol-8-yl]spiro-(3*H*-indole-(1*H,2H*)-3,2-(4*H*)-thiazolidine)-2,4-diones **4a-d**, respectively, (Scheme I). Compounds **3a-d** gave positive Beilsteins green flame test and Lassaignes sodium fusion test for the presence of chlorine.

### Antibacterial activity

All the synthesized compounds **2a-d**, **3a-d** and **4a-d** were screened for their antibacterial activity against *S. aureus*, *S. pyogenes*, *S. albus* and *E. coli* according to the standard procedure (Table I). The minimum inhibitory concentration (MIC) was determined using tube dilution method according to standard procedure<sup>20</sup>. DMF was used as a solvent and blank. Ciprofloxacin (MIC: 5  $\mu\text{g}/\text{mL}$ ) was used as the antibacterial standard. The observation of the data (Table I) reveals that the compound **2b** was more effective against *S. pyogenes* at a concentration of



Scheme I

9  $\mu$ g/mL compared to the other members of the same series. On the other hand, compound **3b** was more active against *S. albus* at a concentration of 8  $\mu$ g/mL and **4b** against *E. coli* at a concentration of 11  $\mu$ g/mL. All other compounds of the same series exhibited significant to moderate antibacterial activity.

### Experimental Section

Melting points were determined in open capillaries on Thomas Hoover apparatus and are uncorrected.  $^1H$  NMR spectra were recorded on a Bruker AM 400 (400 MHz) instrument using TMS as an internal standard and  $DMSO-d_6$  as solvent. Chemical shifts are given in  $\delta$  (ppm) and coupling constants  $J$  in Hz. Mass spectra were recorded on a Shimadzu GC-MS

instrument. Elemental analysis (C, H, N) was performed on a Perkin-Elmer 240 analyzer and all values are within  $\pm 0.4\%$  of theoretical unless otherwise specified. All products were purified by recrystallisation from ethanol.

**General procedure for the synthesis of naphtho[1,2-b]pyran-3-yl(3-imino-2-oxo-1H-indole (2a-d, Table II).** To the solution **1a-d** (0.01 mole) in ethanol (25 mL) was added isatin (0.01 mole, 1.47 g) and catalytic amount of glacial acetic acid (3-4 drops), and the reaction mixture refluxed on a water-bath for 3 hr. The mixture was then cooled and poured onto crushed ice-water. The product separated was filtered, dried and purified by recrystallisation from ethanol.

**Table I**—Antibacterial activity data (MIC  $\mu\text{g/mL}$ ) of compounds **2a-d** to **4a-d**

| Compd         | Antibacterial activity |                    |                 |                |
|---------------|------------------------|--------------------|-----------------|----------------|
|               | <i>S. aureus</i>       | <i>S. pyogenes</i> | <i>S. albus</i> | <i>E. coli</i> |
| <b>2a</b>     | 40                     | 35                 | 67              | 88             |
| <b>2b</b>     | 12                     | 09                 | 21              | 20             |
| <b>2c</b>     | 60                     | 55                 | 98              | 90             |
| <b>2d</b>     | 68                     | 71                 | 82              | 112            |
| <b>3a</b>     | 110                    | 84                 | 43              | 52             |
| <b>3b</b>     | 10                     | 17                 | 08              | 20             |
| <b>3c</b>     | 58                     | 79                 | 81              | 63             |
| <b>3d</b>     | 93                     | 44                 | 38              | 53             |
| <b>4a</b>     | 127                    | 99                 | 54              | 61             |
| <b>4b</b>     | 13                     | 16                 | 29              | 11             |
| <b>4c</b>     | 32                     | 74                 | 81              | 40             |
| <b>4d</b>     | 56                     | 69                 | 90              | 101            |
| Ciprofloxacin | 5                      | 5                  | 5               | 5              |

**General procedure for the synthesis of *N*-[naphtho[1, 2-*b*]pyrano[3, 4-*d*]thiazol-8-yl]spiro-[3*H*-indole-(1*H*, 2*H*)-3, 4-(2*H*)-3-chloroazetidine]-2,2-diones (3a-d, Table II).** A mixture of compounds **2a-d** (0.01 mole) and chloroacetyl chloride (0.02 mole) in 1,4-dioxane (20 mL) in the presence of catalytic amount of triethylamine was stirred for 6 hr. The reaction mixture was later poured onto crushed ice-water. The product separated was filtered, washed, dried and purified by recrystallisation from dichloromethane.

**General procedure for the synthesis of *N*-[naphtho[1,2-*b*]pyrano[3,4-*d*]thiazol-8-yl]spiro-[3*H*-indole-(1*H*, 2*H*)-3, 2-(4*H*)-thiazolidine]-2, 4-diones (4a-d, Table II).** Compound **2a-d** (0.01 mole) and mercaptoacetic acid (0.01 mole, 1.84 g) were refluxed in the presence of catalytic amount of anhydrous  $\text{ZnCl}_2$  in dry 1,4-dioxane (25 mL) for 6 hr. The mixture was then cooled and poured onto crushed ice-

**Table II**—Characterization data of compounds **2a-d** to **4a-d**

| Compd     | Mol. formula                                                 | m.p. $^{\circ}\text{C}$ | Yield (%) | MS m/z          | $^1\text{H}$ NMR (DMSO- $d_6$ )                                                                                                                                                                                                                                                                                                 |
|-----------|--------------------------------------------------------------|-------------------------|-----------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>2a</b> | $\text{C}_{22}\text{H}_{13}\text{N}_3\text{O}_2\text{S}$     | 183                     | 82        | $\text{M}^+383$ | $^1\text{H}$ NMR: $\delta$ 5.60 (s, 2H, $\text{C}_6 >\text{CH}_2$ ), 6.90-8.00 (m, 10H, Ar-H), 11.00 (s, 1H, >N-H, $\text{D}_2\text{O}$ exchangeable).                                                                                                                                                                          |
| <b>2b</b> | $\text{C}_{22}\text{H}_{12}\text{N}_3\text{O}_2\text{SBr}$   | 164                     | 72        | $\text{M}^+462$ | $^1\text{H}$ NMR: $\delta$ 5.62 (s, 2H, $\text{C}_6 >\text{CH}_2$ ), 6.90-7.90 (m, 9H, Ar-H), 11.02 (s, 1H, >N-H, $\text{D}_2\text{O}$ exchangeable).                                                                                                                                                                           |
| <b>2c</b> | $\text{C}_{22}\text{H}_{13}\text{N}_4\text{O}_2\text{S}$     | 178                     | 80        | $\text{M}^+399$ | $^1\text{H}$ NMR: $\delta$ 5.42 (s, 1H, -OH, $\text{D}_2\text{O}$ exchangeable), 5.62 (s, 2H, $\text{C}_6 >\text{CH}_2$ ), 6.90-7.98 (m, 9H, Ar-H), 11.00 (s, 1H, >N-H, $\text{D}_2\text{O}$ exchangeable).                                                                                                                     |
| <b>2d</b> | $\text{C}_{23}\text{H}_{15}\text{N}_4\text{O}_2\text{S}$     | 179                     | 81        | $\text{M}^+413$ | $^1\text{H}$ NMR: $\delta$ 1.22 (d, 3H, $\text{C}_6 -\text{CH}_3$ ), 4.68 (q, 1H, $\text{C}_6\text{-H}$ ), 5.48 (s, 1H, -OH, $\text{D}_2\text{O}$ exchangeable), 6.88-7.90 (m, 9H, Ar-H), 11.00 (s, 1H, >N-H, $\text{D}_2\text{O}$ exchangeable).                                                                               |
| <b>3a</b> | $\text{C}_{24}\text{H}_{14}\text{N}_3\text{O}_3\text{SCl}$   | 199                     | 62        | $\text{M}^+459$ | $^1\text{H}$ NMR: $\delta$ 3.20 (s, 1H, >CHCl), 5.60 (s, 2H, $\text{C}_6 >\text{CH}_2$ ), 6.90-8.00 (m, 10H, Ar-H), 11.00 (s, 1H, >N-H, $\text{D}_2\text{O}$ exchangeable).                                                                                                                                                     |
| <b>3b</b> | $\text{C}_{24}\text{H}_{13}\text{N}_3\text{O}_3\text{SBrCl}$ | 190                     | 72        | $\text{M}^+538$ | $^1\text{H}$ NMR: $\delta$ 3.22 (s, 1H, >CHCl), 5.62 (s, 2H, $\text{C}_6 >\text{CH}_2$ ), 6.90-7.98 (m, 9H, Ar-H), 11.00 (s, 1H, >N-H, $\text{D}_2\text{O}$ exchangeable).                                                                                                                                                      |
| <b>3c</b> | $\text{C}_{24}\text{H}_{14}\text{N}_3\text{O}_4\text{SCl}$   | 201                     | 77        | $\text{M}^+475$ | $^1\text{H}$ NMR: $\delta$ 3.22 (s, 1H, >CHCl), 5.42 (s, 1H, -OH, $\text{D}_2\text{O}$ exchangeable), 5.62 (s, 2H, $\text{C}_6 >\text{CH}_2$ ), 6.90-7.98 (m, 9H, Ar-H), 11.00 (s, 1H, >N-H, $\text{D}_2\text{O}$ exchangeable).                                                                                                |
| <b>3d</b> | $\text{C}_{25}\text{H}_{16}\text{N}_3\text{O}_4\text{SCl}$   | 186                     | 68        | $\text{M}^+489$ | $^1\text{H}$ NMR: $\delta$ 1.22 (d, 3H, $\text{C}_6 -\text{CH}_3$ ), 4.68 (q, 1H, $\text{C}_6\text{-H}$ ), 3.22 (s, 1H, >CHCl), 5.42 (s, 1H, -OH, $\text{D}_2\text{O}$ exchangeable), 6.90-7.98 (m, 9H, Ar-H), 11.00 (s, 1H, >N-H, $\text{D}_2\text{O}$ exchangeable).                                                          |
| <b>4a</b> | $\text{C}_{24}\text{H}_{15}\text{N}_3\text{O}_3\text{S}_2$   | 211                     | 82        | $\text{M}^+425$ | $^1\text{H}$ NMR: $\delta$ 3.60 (s, 2H, -S-CH <sub>2</sub> -), 5.62 (s, 2H, $\text{C}_6 >\text{CH}_2$ ), 6.90-8.10 (m, 10H, Ar-H), 11.00 (s, 1H, >N-H, $\text{D}_2\text{O}$ exchangeable).                                                                                                                                      |
| <b>4b</b> | $\text{C}_{24}\text{H}_{14}\text{N}_3\text{O}_3\text{S}_2$   | 196                     | 73        | $\text{M}^+504$ | $^1\text{H}$ NMR: $\delta$ 3.62 (s, 2H, -S-CH <sub>2</sub> -), 5.60 (s, 2H, $\text{C}_6 >\text{CH}_2$ ), 6.90-8.10 (m, 9H, Ar-H), 11.00 (s, 1H, >N-H, $\text{D}_2\text{O}$ exchangeable).                                                                                                                                       |
| <b>4c</b> | $\text{C}_{24}\text{H}_{15}\text{N}_3\text{O}_4\text{S}_2$   | 171                     | 69        | $\text{M}^+441$ | $^1\text{H}$ NMR: $\delta$ 3.62 (s, 2H, -S-CH <sub>2</sub> -), 5.40 (s, 1H, -OH, $\text{D}_2\text{O}$ exchangeable), 5.62 (s, 2H, $\text{C}_6 >\text{CH}_2$ ), 6.90-7.98 (m, 9H, Ar-H), 11.00 (s, 1H, >N-H, $\text{D}_2\text{O}$ exchangeable).                                                                                 |
| <b>4d</b> | $\text{C}_{25}\text{H}_{17}\text{N}_3\text{O}_4\text{S}_2$   | 188                     | 80        | $\text{M}^+455$ | $^1\text{H}$ NMR: $\delta$ 1.22 (d, 3H, $\text{C}_6 -\text{CH}_3$ ), 3.60 (s, 2H, -S-CH <sub>2</sub> -), 4.68 (q, 1H, $\text{C}_6\text{-H}$ ), 5.42 (s, 1H, -OH, $\text{D}_2\text{O}$ exchangeable), 5.62 (s, 2H, $\text{C}_6 >\text{CH}_2$ ), 6.90-7.98 (m, 9H, Ar-H), 11.00 (s, 1H, >N-H, $\text{D}_2\text{O}$ exchangeable). |

water. The product separated was filtered, dried and purified by recrystallisation from ethanol.

## References

- (a) Ellis G P, *Heterocyclic Compounds: Chromenes, Chromanones and Chromones*, 31, **1977**, 211 (b) Karnik A V, Kulkarni A M & Malviya M J, *Indian J Chem*, 43B, **2004**, 839.
- Quagliato D A, *Chem Abstr*, 118, **1993**, 233887q.
- Tonikovich O, Edvard A & Tuskaev V R, *Ru* 2, 0397, 47; *Chem Abstr*, 124, **1996**, 316989z.
- Koga H & Nabata H, *PCT Int Appl WO* 9214439; *Chem Abstr*, 118, **1993**, 233885n.
- Litt A D & Engelhart J E, (Esso Research and Engineering Co) *Ger Oftent* 2, 123, 312, (Cl CO7d, 09 Dec **1971**), *US Appl* 25 May **1970**, 42.
- (a) Kumar P, Nath C, Bhargava K P & Shanher K, *Indian J Chem*, 21B, **1982**, 1182 (b) Kawashima Y, Amanuma F, Sata M, Nakashima S, Kaorusou Y & Noriguchi I, *J Med Chem*, 29, **1986**, 2284 (c) Hiremath S P, Ullagaddi A & Purohit M G, *Indian J Chem*, 27B, **1988**, 1102 (d) Joshi K C, Dandia A & Bhagat S, *Indian J Chem*, 29B, **1990**, 766 (e) Sridhar S K & Ramesh A, *Indian J Chem*, 41B, **2002**, 668.
- Mogilaiah K & Babu-Rao R, *Indian J Chem*, 37B, **1998**, 894.
- Vashi B S, Mehta D S & Shah V H, *Indian J Chem*, 34B, **1995**, 802.
- Bose A K, Manhas M S, Kapur J C, Sharma S D & Amin S J, *J Med Chem*, 17, **1974**, 541.
- Kamiya T, *Chem Abstr*, 86, **1977**, 1656.
- Maffi G, *Chem Abstr*, 53, **1959**, 8433.
- Weber G, Buccheri F, Nato R & Salozzo P, *J Het Chem*, 15, **1978**, 1573.
- Stephenton J S, Vorella E, Micromastasras E D & Alexander N E, *J Het Chem*, 16, **1978**, 1373.
- Srivastava V K, Singh S, Gulati A & Shanker K, *Indian J Chem*, 26B, **1987**, 652; *Chem Abstr*, 108, **1988**, 204586d.
- Singh J P, Gupta S, Kumar A, Sinha J N, Bhargawa K P & Shanker K, *Arch Pharm*, 317(7), **1984**, 1609; *Chem Abstr*, 101, **1984**, 15169h.
- Shah S K & Peter B L, *European Patent Appl EP* 199, **1986**, 360; *Chem Abstr*, 110, **1989**, 170374.
- (a) Schuda P F, *Top Org Chem*, 91, **1980**, 75 (b) Mogilaiah K, Rao R B & Sudharkar R, *Indian J Chem*, 40B, **2001**, 336 (c) Shirodkar J M & Mulwad V V, *Indian J Het Chem*, 11, **2002**, 199 (d) Srivastava S D, Srivastava S K & Srivastava S, *Indian J Chem*, 41B, **2002**, 1937 (e) Choudhari B P & Mulwad V V, *Indian J Het Chem*, 12, **2003**, 197 (f) Manjunath S Y & Biradar J S, *Indian J Chem*, 43B, **2004**, 141.
- (a) Troutmann H D & Long L M, *J Am Chem Soc*, 70, **1948**, 3436 (b) Surrey A R, *J Am Chem Soc*, 71, **1949**, 3354 (c) Geheen & Moeckel, *Ann Chem*, 685, **1965**, 176 (d) Singh J R, *J Indian Chem Soc*, 53, **1976**, 595 (e) Doran J & Shonle H A, *J Org Chem*, 3, **1938**, 1993 (f) Jadhav K P & Ingale D B, *J Indian Chem Soc*, 55, **1978**, 424 (g) Misra N C & Patnaik K K, *Indian J Appl Chem*, 34, **1971**, 148 (h) Mane R A, Ingle V S, Sawale A R & Ingle R D, *Indian J Chem*, 40B, **2001**, 124 (i) Shirodkar J M & Mulwad V V, *Indian J Het Chem*, 11, **2002**, 291.
- Sharma S D & Kaur S, *Indian J Chem*, 23(B), **1984**, 518.
- Frankel S, Reitman S & Sonnenwirth A C in *Gradwol's Clinical Laboratory Methods and Diagnosis*, Vol 2, 7<sup>th</sup> edition (C V Mosby Company, Germany), **1970**, p1406